Abstract Dalam kehidupan sehari-hari, individu selalu melakukan hubungan sosial dengan individu lain atau kelompok-kelompok tertentu. Hubungan sosial yang terjadi antar individu maupun antar 1BAB II KAJIAN PUSTAKA 2.1 Paradigma Paradigma penelitian kualitatif dilakukan melalui proses induktif, yaitu berangkat Sedangkankelemahan . Keuntungan menggunakan inseminasi buatan adalah bahwa waktu kopulasi (perkawinan) dapat terjadi lebih cepat dan sesuai dengan yang kita inginkan. mortalitas dan perubahan kondisi makhluk hidup, yaitu kejadian-kejadian didalamnya terdapat kehidupan. Keadaan lingkungan alam merupakan faktor penting bagi kehidupan manusia 1 Schleiden (1840—1891) dan Schwan (1810—1882) yang menyatakan bahwa makhluk hidup terdiri atas sel-sel. Sel merupakan unit struktural makhluk hidup. 2. Robert Brown (1813) menemukan nukleus dan menyatakan bahwa nukleus merupakan bagian yang penting dari sel. 3. Felix Dujardin (1835), menyatakan bahwa bagian yang penting adalah cairan sel. 4. PolaPola Hereditas Pada Makhluk Hidup Kompetensi Dasar 3. 6 Menganalisis pola-pola hereditas pada makhluk hidup. 4. 6 Menyajikan hasil penerapan pola-pola hereditas dalam perhitungan peluang dari persilangan yang melibatkan peristiwa pautan dan pindah silang Pernah tidak Anda berpikir mengapa bentuk rambut Anda mirip dengan ayah, warna kulit yang mirip dengan ibu, atau bahkan bentuk mata Vay Tiền Online Chuyển Khoản Ngay. Jumlah melanin atau pigmen kulit menentukan warna kulit beberapa kondisi, produksi pigmen kulit bisa terganggu sehingga membuat warna kulit manusia sangat orang ada yang mengalami kelainan pigmentasi kulit yang disebabkan oleh genetik, kondisi lingkungan, atau jumlah melanin dalam kenali lebih lanjut apa itu pigmen kulit dan jenis-jenis kelainannya di bawah ini!Baca Juga 4 Penyebab Perubahan Warna Kulit Wajah Balita, Catat!Apa Itu Pigmen Kulit?Foto pigmen kulit kulit adalah zat yang menghasilkan berbagai corak dan warna kulit, rambut, dan mata pigmentasi ditentukan oleh jumlah pigmen di PLoS One, tanpa pigmen, kulit akan menjadi putih pucat dengan nuansa merah muda yang disebabkan oleh aliran darah melalui berkulit putih menghasilkan sangat sedikit pigmen orang berkulit gelap menghasilkan jumlah sedang, dan orang berkulit sangat gelap menghasilkan paling dengan albinisme memiliki sedikit atau tanpa melanin sehingga kulit mereka tampak putih atau merah muda pigmen cukup merata di kulit, tetapi terkadang orang memiliki bintik-bintik atau bercak kulit dengan lebih banyak bintik-bintik tersebut termasuk bintik-bintik, bintik-bintik penuaan lentigin, dan Jenis Kelainan Pigmen KulitPigmen dihasilkan oleh sel-sel yang disebut melanosit pada lapisan epidermis sel-sel tersebut dapat mengalami kerusakan, yang diakibatkan oleh paparan sinar matahari, efek samping pengobatan, atau kondisi medis ketika melanosit rusak atau tidak sehat, produksi melanin otomatis akan ini berdampak pada perubahan warna kulit akibat gangguan ini disebut juga kelainan yang hanya memengaruhi sebagian kecil area kulit, tetapi ada juga gangguan pigmentasi yang menyerang seluruh ini beberapa kelainan pigmen yang umum terjadi1. MelasmaFoto Melasma Foto Orami Photo StockMelasma adalah kelainan pigmen kulit yang umum ditemui, ditandai dengan timbulnya bercak kecokelatan atau kehitaman di kulit, terutama area penelitian DermNet, menunjukkan bahwa melasma lebih sering terjadi pada wanita daripada pria, dengan rentang usia 20-40 paling sering terjadi pada orang yang sering berjemur atau memiliki kulit cokelat pigmen kulit ini juga bisa muncul di area tubuh lainnya, seperti lengan bawah, leher, dan pasti yang memicu melasma belum diketahui secara kemungkinan kondisi ini terkait dengan melanosit sel yang memberikan warna pada kulit yang memproduksi terlalu banyak pemicu potensial melasma, di antaranyaPerubahan hormon selama kehamilanTerapi hormonEfek samping dari pil KBSinar matahariProduk perawatan kulit tertentuFaktor genetikPasien yang mengalami melasma biasanya disarankan dokter untuk tidak terlalu sering atau terlalu lama terpapar sinar keluar rumah, sebaiknya lindungi kulit dengan mengoleskan tabir surya SPF Juga Ini Cara Menghilangkan Melasma setelah Melahirkan, Bisa Dicoba!2. VitiligoFoto Foto Orami Photo StockVitiligo adalah suatu kondisi yang menyebabkan hilangnya zat warna pada ini menyebabkan terbentuknya bercak-bercak putih pada kulit di berbagai area juga menyerang rambut, bagian dalam mulut bahkan dapat menyerang orang dengan berbagai jenis kulit, tetapi mungkin akan tampak lebih jelas pada orang dengan kulit lebih diketahui secara spesifik bagaimana mekanisme kemunculan penyakit tetapi, ada banyak faktor risiko untuk vitiligo, yaitu sebagai keluargaMemiliki penyakit autoimunHal-hal pemicu, seperti sinar matahari, stres, atau paparan bahan kimia industriPenanganan vitiligo terdiri dari obat-obatan, pembedahan, dan terapi tambahan Juga 7 Pantangan Penyakit Vitiligo, Salah Satunya Jangan Bikin Tato!3. AlbinismeFoto pigmen kulit albino Foto Orami Photo StockAlbinisme atau albino ini adalah kelainan genetik akibat adanya mutasi gen yang dapat menyebabkan melanosit tidak kulit, rambut, atau mata penderitanya menjadi tidak dengan albinisme memiliki jumlah melanin yang kurang atau tidak memiliki melanin sama dasarnya manusia tidak perlu melanin untuk bertahan kekurangan zat ini bisa menimbulkan gangguan kulit akibat radiasi UVA dan UVB dari sinar International Journal of Dermatology, orang dengan albinisme menghasilkan vitamin D lima kali lebih cepat dari orang berkulit melanin dapat membuatnya lebih mudah masuk dan meresap ke dalam kulit selama terkena sinar UV dari albino lebih berisiko terbakar dari albinisme ditujukan untuk mendapatkan perawatan mata yang baik dan pemantauan kulit terhadap adanya tanda-tanda Juga Kondisi yang Cukup Langka, Ketahui Penyebab Albino pada Anak4. Hiperpigmentasi Pasca InflamasiFoto pigmen kulit Orami Photo StocksFoto Orami Photo StockHiperpigmentasi pasca inflamasi adalah kondisi ketika kulit pada area tertentu memiliki warna yang berbeda dari warna kulit kelainan pigmen kulit ini dapat dipicu oleh infeksi kulit, luka bakar, atau paparan zat iritatif yang merusak beberapa jenis peradangan pada kulit yang menyebabkan timbulnya hiperpigmentasi kulit pasca inflamasi adalahJerawatIritasi kulitSunburn kulit terbakar matahariInfeksi kulitCedera atau trauma pada kulitHiperpigmentasi setelah inflamasi dapat hilang sendiri seiring berjalannya waktu tanpa melakukan pengobatan atau perawatan apa ini karena kulit akan mengalami regenerasi secara alami tiap 28 hari. Artinya, sel-sel kulit yang memiliki pigmen melanin akan meluruh dan digantikan oleh sel kulit baru lebih begitu, warna kulit jadi tampak perlu diketahui bahwa proses tersebut dapat memakan waktu berbulan-bulan hingga bertahun-tahun Juga Kenali Eritrasma, Infeksi yang Terjadi pada Area Lipatan KulitItulah 4 jenis gangguan pigmen kulit yang umum ditemukan. Sebagian besar gangguan ini adalah kelainan genetik sehingga tidak bisa disembuhkan dan Moms mengalami jenis gangguan tersebut, sebaiknya konsultasikan kepada dokter kulit untuk penanganan lebih lanjut. Journal List J Anim Sci Biotechnol 2019 PMC6745769 J Anim Sci Biotechnol. 2019; 10 75. Yumei Zhao, Gang Tian, Daiwen Chen, Ping Zheng, Jie Yu, Jun He, Xiangbing Mao, Zhiqing Huang, Yuheng Luo, Junqiu Luo, and Bing YuAbstractBackgroundThis study was conducted to determine the effects of different dietary protein levels and amino acids supplementation patterns in low protein diets on the growth performance, carcass characteristics and nitrogen excretion in growing-finishing barrows ± kg were randomly assigned to 7 diets. Diet 1 the high crude protein diet with balanced for 10 essential amino acids EAAs. Diet 2 the medium crude protein diet with 2% approx decreased protein level of Diet 1 and balanced 10 EAAs. Diet 3 the low crude protein diet with 4% decreased protein level of Diet 1 and balanced 10 EAAs. The protein levels of Diet 4, 5, 6 and 7 were the same as that of Diet 3. Diet 4 was only balanced for lysine Lys, methionine Met, threonine Thr and tryptophan Trp; Diet 5 and 6 were further supplemented with extra isoleucine Ile or valine Val, respectively; Diet 7 was further supplemented with extra Ile + the 112 days trial, the reduction of dietary protein by 2% or 4% with balanced10 EAAs significantly decreased nitrogen excretion P In low protein diet, Val supplementation significantly increased body weight gain at 25–50 kg phase P The total N excretion of pigs supplemented with only Lys, Met, Thr and Trp was numerically higher than that of pigs fed with extra Ile, or Val, or Ile + Val low protein diet, Val is more required than Ile in the early growing phage 25–50 kg, while Ile becomes more required in the late growing and finishing phage 75–125 kg.Electronic supplementary materialThe online version of this article contains supplementary material, which is available to authorized Growing-finishing pigs, Growth performance, Isoleucine, Low protein diets, Nitrogen excretion, ValineBackgroundOn the economic and environmental perspectives, the reduction of dietary crude protein and the supplementation with crystalline amino acids were the effective strategies for the swine industry to reduce the cost and pollution [1, 2]. It has been reported that the total N excretion is reduced by approximately 8% for every 1 % unit reduction in dietary CP [3]. Previous studies showed that the 4% reduction of CP in diet does not influence growth performance in pigs from growing to finishing when supplemented with crystalline Lys, Trp, Thr and Met [4–7]. However, the opposite result was reported thatreducing dietary protein by 4% and supplementing Lys, Trp, Thr and Met decrease the average daily gain ADG in 20–50 kg pigs [8]. Moreover, reducing dietary protein levels by 5% in 20–50 kg pigs, significantly decreases growth performance [9], probably due to the deficiency of other essential amino acids EAAs in the low protein EAAs were required in pigs for the maximum of nitrogen deposition [10]. However, it was impossible to balance 10 EAAs in diets due to the high cost. Thus, supplementation of the first four limiting amino acids Lys, Met,Trp and Thr or even fewer is a common strategy in pig production. As mentioned, when the dietary protein level was reduced by more than 4%, the supplementation of the only first four limiting amino acids might affect the growth performance in growing-finishing pigs [8, 9, 11]. Thus, it is necessary to find an economical supplementation pattern that can ensurethe normal growth of pigs. Val and Ile are the fifth and sixth limiting AA in growing-finishing pigs [12]. Val, Ile and leucine Leu are branched-chain amino acids and play important roles in protein deposition and normal physiological functions in the body. Due to the similar structure, branched-chain amino acids compete with each other for the absorption, transportation and degradation [13]. In diets with corn as the main ingredient, Leu content generally exceeds the needs of pigs, which may decrease the decomposition of Val and Ile and exacerbate the lack of these two amino acids [14, 15]. Several studies have investigated the effects of Val and Ile in low protein diets on the growth performance of piglets and growing pigs [12, 16–18]. However, there are limited data available in finishing objective of this experiment was to estimate the effects of different dietary protein levels and amino acids supplementation patterns including Val and Ile in low protein diets on growth performance, carcass characteristic and nitrogen excretion of the growing-finishing animals and dietsThe experiment was conducted in the Metabolism Laboratory of the Institute of Animal Nutrition, Sichuan Agricultural University Yaan, China.A total of 42 barrows [Landrace×Yorkshire × Duroc; initial body weight ± kg] were randomly allotted to seven diets based on the initial weight n = 6. The trial lasted 112 days and was divided into four weight phases 25–50 kg, 50–75 kg, 75–100 kg and 100–125 kg. The 7 diets were Diet 1, the high crude protein diet HCP, protein levels in the four phases were and respectively, and balanced for 10 EAAs; Diet 2, the medium crude protein diet MCP, based on the NRC 2012 recommendation, protein levels in the four phases were and respectively, and 10 EAAs were balanced. The dietary protein level of Diet 3, 4, 5, 6 and 7 the low crude protein diets, LCP was decreased by 4% on the basis of Diet 1. Additionally, Diet 3 balanced for 10 EAAs; Diet 4 only balanced for Lys, Met, Thr and Trp; Diet 5 and 6 were further supplemented with extra Ile or Val, respectively; Diet 7 was further supplemented with extra Ile + Val. The NE level of Diet 1 and Diet 2 was MJ/kg according to NRC 2012 [19]; the NE level of Diet 3, 4, 5, 6 and 7 was MJ/kg according to the results of Yi et al. [8], which found that the NE level should be reduced to obtain optimal carcass characteristics in low protein diet. All pigs were individually housed in stainless-steel metabolism crates m × m × m.Experimental diets were mainly composed of corn, wheat bran, soybean meal and rapeseed meal. Dietary protein level was reduced by replacing part of soybean meal with corn and wheat bran. Experimental diets were formulated on the basis of the standardized ileal digestible amino acids and NE system. Feed ingredients samples were collected for crude protein and amino acid analysis before the feed formulation, and the standard ileal digestible amino acid of the diets was calculated according to the standard ileal digestibility in the Table of China Feed Composition and Nutritional Value 25th ed., 2014. Nutrients in the diets met or exceeded the nutrient requirement recommended by NRC 2012 except dietary CP and NE Table 1 and Additional file 1 Table S1-S4. Limitation order of EAAs in low protein diets showed in Table 2. Table 1Nutrient levels of dietsWeight phaseNutrientHCP3MCP4 − 2%LCP5 − 4%25–50, kgCP1, % MJ/ kgCP, % MJ/ kgCP, % MJ/ kgCP, % MJ/ 2Limitation order of essential amino acids in low protein dietsItem25–50, kg Phase50–75, kg Phase75–100, kg Phase100–125, kg PhaseFirst limiting AALys %Lys %Lys %Lys %Second limiting AAMet %Thr %Thr %Thr %Third limiting AAThr %Trp %Trp %Trp %Fourth limiting AATrp %Met %Met %Ile %Fifth limiting AAVal %Ile %Ile %Met %Sixth limiting AAIle %Val %Val %Val %Seventh limiting AAHis %His %Phe %Eighth limiting AAPhe %Phe %His %The percentages in parentheses represent the ratio of the amino acids content in the low protein diet−4% without addition of synthetic amino acids to the NRC 2012 recommendationPigs were fed at 800, 1400 and 2000 ad libitum with free access to water. Pigs were individually weighed at each weight phase shift, and the daily feed consumption of each pig was recorded. The data was used to calculate average daily feed intake ADFI, average daily gain ADG and feed-to-gain ratio F /G ratio.Nitrogen balance andammonia emissionstudyIn the last four days of each phase, all pigs were subjected to a 4-day total faeces and urine collection. At the end of the collection period, four day’s fecal samples from each pig were pooled. 500 g fecal sample was dried in a forced-draft oven at 65 °C, grounded through a sifter, and kept at − 20 °C for further analysis. Urine was collected and recorded daily at the same time as the faecal collection. At the end of the collection period, four day’s urine samples from each pig were pooled, and a 100 mL subsample stored at − 20 °C for further analysis. Additionally, on the last day of the collection, fresh feces 100 g and urine 100 mL from each pig were immediately placed into a 10-L bucket. The ammonia concentration in the bucket at 0 h and 4 h were measured by portable ammonia detector APES-NH3200-H, Empaer, Shenzhen, China.Blood sample collectionAt the end of the trial day 113, blood samples were collected via jugular vein puncture after a 12-h overnight fasting. Blood samples were centrifuged 3,000×g for 15 min at 4 °C and serum samples were stored at − 20 ° of carcass characteristics and organ indexAfter blood sampling, all pigs were slaughtered following a standard procedure at the end of the trial. After exsanguination and evisceration, carcass was split through the midline, and the hot carcass weight including kidney and leaf fat was recorded to calculate dressing percentages. Internal organs were removed and weighed to calculate organ index, which is the percentage of the organ weight to the live weight of the pig. The other carcass traits were measured obtained from the left side of the carcass, including average backfat thicknesses average of first- rib, last-rib and last-lumbar fat thickness, carcass length and loin-eye area The measurement position of loin-eye area is the cross-section of the longissimus dorsi muscle at the junction of the thoracolumbar segment, and the measurement method is used a vernier caliper to measure the maximum height and width of the eye muscle, and the calculation formula is loin-eye area = length × width × analysis of samplesFor determining nitrogen-balance, crude protein of experimental diets, faeces and urine samples were analyzed according to AOAC 984. 13 [21].The concentration of serum urea nitrogen SUN, total protein TP and albumin ALB were analyzed using assay kits according to the manufacturer’s instructions Nanjing Jiancheng Bioengineering Institute, China.Ammonia nitrogen NH3-N concentration in serum and faeces was determined spectrophotometrically according to Nessler reagent with yellow coloring and photometering at a wavelength of 420 measurements were determined in analysisDiet 1, diet 2 and diet 3 groups were compared to explore the effect of different dietary protein levels in the same amino acid supplementation pattern, diet 3, diet 4, diet 5, diet 6 and diet 7 groups were compared to explore the effect of different amino acid supplementation patterns at the same dietary protein level. All data were analyzed by one-way ANOVA for a randomized complete block design using the SPSS statistical software package SPSS differences between diets were separated by Duncan’s multiple range tests. All data were expressed as the mean ± SE. A difference was considered significant at P which was consistent with previous research [23–25]. We also found that a 4% reduction in dietary protein with balanced for 10 EAAs had no negative effect on pig growth performance P > However, if only balanced for Lys, Met, Thr and Trp, 4% reduction of dietary protein increased F/G ratio, indicating other essential amino acids were lacking in the low protein diets. In 25–50 kg pigs, Val supplementation significantly increased ADFI and ADG P reduction of feed intake in Ile alone group in 50–75 kg phase was smaller than that in 25–50 kg phase, which indicated that the lack of Val was relieved in 50–75 kg phase. In both 75–100 kg phase and 100–125 kg phase, supplementation of Ile alone significantly improved the ADFI and ADG P suggesting dietary CP level had a greater influence on the organ index than amino acid balance emission of growing-finishing pigsAlbumin ALB and globulin in serum reflect protein synthesis and nutritional status. Serum urea nitrogen SUN was an end product of the metabolism of proteins and amino acids, and its concentration was negative correlated with the utilization of proteins and amino acids [36]. NH3-N is a metabolite of intestinal microbial decomposition of protein and amino acids, which reflects the utilization of protein and amino acids. In this study, with balanced 10 EAAs, a 2% or 4% reduction in dietary protein significantly decreased the concentration of SUN P < but did not affect serum TP, ALB and NH3-N contents Table 5. Similar results were found in Figueroa et al. [16], in which a 4% reduction of dietary protein significantly reduces the concentration of SUN in growing pigs. Furthermore, in low protein diet, addition of extra Ile significantly reduced the concentration of serum NH3-N P < compared with diet only balanced for Lys, Met, Thr and Trp. It was indicated that supplementation with Ile improved the amino acid balance in low protein diets and increased N utilization resulting in lower NH3-N levels. There was no significant difference in serum SUN, TP and ALB between the different amino acids addition diets, which was consistent with previous studies [18, 34]. Lordelo et al. [18] suggested that the changes in the concentration of serum amino acid and urea nitrogen had no aid in the identification of limiting amino acids in the diet. Table 5Blood profiles of finishing pigs fed low protein diet supplemented with different amino acids n = 6ItemHCPMCP −2, %LCP−4, % P 1 P 2 10 EAAs10 EAAs10 EAAsLys, Met, Thr,TrpLys, Met,Thr,Trp, IleLys, Met, Thr,Trp, ValLys, Met, Thr,Trp, Ile, ValSUN, mmol/ ± ± ± ± ± ± ± g/ ± ± ± ± ± ± ± g/ ± ± ± ± ± ± ± mg/ ± ± ± ± ± ± ± the dietary protein level and supplementation of crystalline amino acids is an effective way to reduce N excretion without affecting animal growth performance. In this study, when the dietary protein level was reduced by 2% or 4% and balancing 10 EAAs, total nitrogen excretion decreased by and respectively P < Table 6, which was consistent with previous studies [37, 38]. Also, the N intake and N excretion in 4% lower protein diet were and less than that of the 2% reduction diet, respectively. This result indicated that total N excretion could be reduced by for every one percent reduction in dietary protein, consisting with the previous summary [35]. In 4% lower protein diet, the total N excretion in groups supplemented with only Lys, Met, Thr and Trp was numerically higher than that of other groups. Specifically, in the 25–50 kg phase, the total N excretion was higher than that of 10 EAAs balanced diet and higher than that of Ile alone addition diet. In summary, both dietary protein levels and amino acid balance patterns would affect the utilization and excretion of N. Table 6Nitrogen balance of growing-finishing pigs fed low protein diet supplemented with different amino acids n = 6ItemHCPMCP − 2, %LCP− 4, % P 1 P 2 10 EAAs10 EAAs10 EAAsLys, Met,Thr,TrpLys, Met,Thr,Trp, IleLys, Met,Thr,Trp, ValLys, Met,Thr,Trp, Ile, Val PhaseI 25–50, kg N intake, g/ ± ± ± ± ± ± ± FN, g/ ± ± ± ± ± ± ± UN, g/ ± ± ± ± ± ± ± T N, g/ ± ± ± ± ± ± ± R N, g/ ± ± ± ± ± ± ± N retention, % ± ± ± ± ± ± ± N ABV, % ± ± ± ± ± ± ± Phase II 50–75, kg N intake g/d ± ± ± ± ± ± ± FN g/d ± ± ± ± ± ± ± UN g/d ± ± ± ± ± ± ± T N g/d ± ± ± ± ± ± ± R N g/d ± ± ± ± ± ± ± N retention rate % ± ± ± ± ± ± ± N ABV% ± ± ± ± ± ± ± Phase III 75–100, kg N intake, g/ ± ± ± ± ± ± ± FN, g/ ± ± ± ± ± ± ± UN, g/ ± ± ± ± ± ± ± T N, g/ ± ± ± ± ± ± ± R N, g/ ± ± ± ± ± ± ± N retention, % ± ± ± ± ± ± ± N ABV, % ± ± ± ± ± ± ± Phase IV 100–125, kg N intake, g/ ± ± ± ± ± ± ± FN, g/ ± ± ± ± ± ± ± UN, g/ ± ± ± ± ± ± ± T N, g/ ± ± ± ± ± ± ± R N, g/ ± ± ± ± ± ± ± N retention, % ± ± ± ± ± ± ± N ABV, % ± ± ± ± ± ± ± nitrogen in urine is mainly in the form of urea. When mixed with faeces, urea can be quickly decomposed into carbon dioxide and ammonia by the urease in the faeces [39, 40]. Therefore, the volatilization of ammonia in pig excreta is closely related to the amount of nitrogen excretion. Several studies found that low-protein diets can reduce nitrogen excretion and ammonia emissions [41, 42]. In this study, 2% lower protein diet with balanced 10 EAAs significantly decreased slurry ammonia volatilization at 4 h in each phaseP < 4% lower dietary protein diet significantly decreased slurry ammonia volatilization at 0 h and 4 h in each phase P < Table 7. However, there was no significant difference in slurry ammonia volatilization at 0 h and 4 h between the different amino acids balanced patterns of low protein diets. It suggested that the volatilization of excrement ammonia was mainly affected by dietary protein level. Table 7Slurry NH3 emission of growing-finishing pigs fed low protein diet supplemented with different amino acids n = 6ItemHCPMCP − 2, %LCP − 4, % P 1 P 2 10 EAAs10 EAAs10 EAAsLys, Met,Thr,TrpLys, Met,Thr,Trp, IleLys, Met,Thr,Trp, ValLys, Met,Thr,Trp, Ile, Val 0 h, mg/m 3 Phase I 50, ± ± ± ± ± ± ± Phase II 75, ± ± ± ± ± ± ± Phase III 100, ± ± ± ± ± ± ± Phase IV 125, ± ± ± ± ± ± ± 4 h, mg/m 3 Phase I 50, ± ± ± ± ± ± ± Phase II 75, ± ± ± ± ± ± ± Phase III 100, ± ± ± ± ± ± ± Phase IV 125, ± ± ± ± ± ± ± together, 2% or 4% decreases in dietary protein levels with balanced 10 EAAs had no significant effects on growth performance and carcass characteristics but significantly reduced nitrogen excretion in pigs. In 4% lower protein diets, Val supplementation significantly increased body weight gain at 25-50 kg phase, while Ile supplementation at 75-100 kg phase and 100–125 kg phase significantly reduced the ratio of feed to gain. The total N excretion of pigs supplemented with only Lys, Met, Thr and Trp was numerically higher than that of pigs fed with extra Ile, or Val, or Ile + Val diets. These results indicated that in low protein diet, Val is more required than Ile in the early growing phage 25–50 kg, while Ile becomes more required in the late growing and finishing phage 75–125 kg.Additional file AcknowledgementsWe thank Dr. Hui Yan of Washington University in St. Louis for editing the acidsADFIAverage daiy feed intakeADGAverage daiy gainALBAlbuminCPCrude proteinEAAEssential amnio acidsF/GFeed to gain ratioNENet energyNH3-NAmmonia nitrogenNRCNational research councilTPTotal proteinAuthors’ contributionsYMZ and BY designed and performed the experiment, analyzed the data and wrote the paper. GT, DWC, PZ and JY helped to design the experiment. JH, XMB, ZQH, YHL and JQL helped to performe the experiment and collect samples. All authors read and approved the final study was supported by the Grant from the Science and Technology Support Program of Sichuan Province 2015NZ0042, 2016NZ006 and National Key R&D Program of China 2018YFD0500605.Availability of data and materialsThe data analyzed during the current study are available from the corresponding author on reasonable approvalThe experimental protocols used in the current study were reviewed and approved by the Animal Care and Use Committee of Sichuan Province Case No. SYXK Sichuan, China2014–187 and followed the guidelines for animal welfare established by this for publicationNot interestsThe authors declare that they have no competing interestsReferences1. Kendall DC, Gaines AM, Kerr BJ, Allee GL. True ileal digestible tryptophan to lysine ratios in ninety- to one hundred twenty-five-kilogram barrows. J Anim Sci. 2007;85113004–3012. doi [PubMed] [CrossRef] [Google Scholar]2. Chen HY, Yi XW, Zhang GJ, Lu N, Chu LC, Thacker PA, et al. Studies on reducing nitrogen excretion I. net energy requirement of finishing pigs maximizing performance and carcass quality fed low crude protein diets supplemented with crystalline amino acids. J Anim Sci Biotechnol. 2011;02284–93. [Google Scholar]3. Kerr BJ. Page139-158 in 9th international symposium on digestive physiology in pigs. Banff, Alberta Canadap; 2003. Dietary manipulation to reduce environmental impact; pp. 14–17. [Google Scholar]4. Kerr BJ, Mckeith FK, Easter RA. Effect on performance and carcass characteristics of nursery to finisher pigs fed reduced crude protein, amino acid-supplemented diets. J Anim Sci. 1995;732433–440. doi [PubMed] [CrossRef] [Google Scholar]5. Jin CF, Kim JH, Han IK, Bea SH. Effects of supplemental synthetic amino acids to the low protein diets on the performance of growing pigs. Asian Australas J Anim Sci. 1998;1111–7. doi [CrossRef] [Google Scholar]6. Qin CF, Huang P, Qiu K, Sun WJ, Xu L, Zhang X, et al. Influences of dietary protein sources and crude protein levels on intracellular free amino acid profile in the longissimus dorsi muscle of finishing gilts. J Anim Sci Biotechnol. 2015;6152. doi [PMC free article] [PubMed] [CrossRef] [Google Scholar]7. Kerr BJ, Southern LL, Bidner TD, Friesen KG, Easter RA. Influence of dietary protein level, amino acid supplementation, and dietary energy levels on growing-finishing pig performance and carcass composition. J Anim Sci. 2003;81123075–3087. doi [PubMed] [CrossRef] [Google Scholar]8. Yi XW, Zhang SR, Yang Q, Yin HH, Qiao SY. Influence of dietary net energy content on performance of growing pigs fed low crude protein diets supplemented with crystalline amino acids. J Swine Health Prod. 2010;186294–300. doi [CrossRef] [Google Scholar]9. Figueroa JL, Lewis AJ, Miller PS, Fischer RL, Gómez RS, Diedrichsen RM. Nitrogen metabolism and growth performance of gilts fed standard corn-soybean meal diets or low-crude protein, amino acid-supplemented diets. J Anim Sci. 2002;80112911–2919. doi [PubMed] [CrossRef] [Google Scholar]10. Agricultural Research Council ARC The nutrient requirements of pigs. Commonwealth agricultural Bureaux. Slough Farnham Royal; 1981. [Google Scholar]11. Roux ML, Donsbough AL, Waguespack AM, Powell S, Bidner TD, Payne RL, et al. Maximizing the use of supplemental amino acids in corn-soybean meal diets for 20- to 45-kilogram pigs. J Anim Sci. 2011;8982415–2424. doi [PubMed] [CrossRef] [Google Scholar]12. Mavromichalis I, Webel DM, Emmert JL, Moser RL, Baker DH. Limiting order of amino acids in a low-protein corn-soybean meal-whey-based diet for nursery pigs. J Anim Sci. 1998;76112833–2837. doi [PubMed] [CrossRef] [Google Scholar]13. Harper AE, Benevenga NJ, Wohlhueter RM. Effects of ingestion of dispropor tionate amounts of amino acids. Physiol Rev. 1970;503428. doi [PubMed] [CrossRef] [Google Scholar]14. Spolter PD, Harper AE. Effect of leucine-isoleucine and valine antagonism and comparison with the effect of ethionine on rat liver regeneration. Arch Biochem Biophys. 1963;1003369–377. doi [PubMed] [CrossRef] [Google Scholar]15. Ren M, Liu C, Zeng XF, Yue LY, Mao XB, Qiao SY, et al. Amino acids modulates the intestinal proteome associated with immune and stress response in weaning pig. Mol Biol Rep. 2014;4163611. doi [PubMed] [CrossRef] [Google Scholar]16. Figueroa JL, Lewis AJ, Miller PS, Fischer RL, Diedrichsen RM. Growth, carcass traits, and plasma amino acid concentrations of gilts fed low-protein diets supplemented with amino acids including histidine, isoleucine, and valine. J Anim Sci. 2003;8161529–1537. doi [PubMed] [CrossRef] [Google Scholar]17. Theil PK, Fernandez JA, Danielsen V. Valine requirement for maximal growth rate in weaned pigs. Livest Prod Sci. 2004;881–299–106. doi [CrossRef] [Google Scholar]18. Lordelo MM, Gaspar AM, Le BL, Freire J. Isoleucine and valine supplementation of alow-protein corn-wheat-soybean meal-based diet for piglets growth performance and nitrogen balance. J Anim Sci. 2008;86112936–2941. doi [PubMed] [CrossRef] [Google Scholar]20. Noblet J, Fortune H, Shi XS, Dubois S. Prediction of net energy value of feeds for growing pigs. J Anim Sci. 1994;722344–354. doi [PubMed] [CrossRef] [Google Scholar]21. Association of Official Analytical Chemists AOAC. AOAC official method Protein crude in animal feed and pet food-copper catalyst Kjeldahl method. In Horwitz W, editor. AOAC official methods for analysis. 14th ed. Gaithersburg; Fancher BI, Jensen LS. Male broiler performance during the starting and growing periods as affected by dietary protein, essential amino acids, and potassium levels. PoultryScience. 1989;68101385–1395. doi [PubMed] [CrossRef] [Google Scholar]23. Hansen JA, Knabe DA, Burgoon KG. Amino acid supplementation of low-protein sorghum-soybean meal diets for 5- to 20-kilogram swine. J Anim Sci. 1993;712452. doi [PubMed] [CrossRef] [Google Scholar]24. Le BL, Van MJ, Dubois S, Noblet J. Energy utilization of low-protein diets in growing pigs. J Anim Sci. 2001;7951259. doi [PubMed] [CrossRef] [Google Scholar]25. Madrid J, Martínez S, López C, Orengo J, López MJ, Hernández F. Effects of low protein diets on growth performance, carcass traits and ammonia emission of barrows andgilts. Anim Prod Sci. 2013;532146–153. doi [CrossRef] [Google Scholar]26. Gloaguen M, Le FHN, Brossard L, Barea R, Primot Y, Corrent E. Response of piglets to the valine content in diet in combination with the supply of other branched-chain amino acids. Animal. 2011;5111734–1742. doi [PubMed] [CrossRef] [Google Scholar]27. Goto S, Nagao K, Bannai M, Takahashi M, Nakahara K, Kangawa K. Anorexia in rats caused by a valine-deficient diet is not ameliorated by systemic ghrelin treatment. Neuroscience. 2010;1661333–340. doi [PubMed] [CrossRef] [Google Scholar]28. Nakahara K, Takata S, Ishii A, Nagao K, Bannai M, Takahashi M. Somatostatin is involved in anorexia in mice fed a valine-deficient diet. Amino Acids. 2012;4241397–1404. doi [PubMed] [CrossRef] [Google Scholar]29. Zheng LF, Wei HK, Cheng CS, Xiang Q, Pang J, Pang J. Supplementation of branched-chain amino acids to a reduced-protein diet improves growth performance in piglets involvement of increased feed intake and direct muscle growth-promoting effect. Br J Nutr. 2016;115121. doi [PubMed] [CrossRef] [Google Scholar]30. Noblet J, Henry Y, Dubois S. Effect of protein and lysine levels in the diet on body gain composition and energy utilization in growing pigs. J Anim Sci. 1987;653717–726. doi [PubMed] [CrossRef] [Google Scholar]31. Goodson J, Rademacher M. NE-net energy-system for swine. Feed Manage. 2005;56227–30. [Google Scholar]32. Knowles TA, Southern LL, Bidner TD, Kerr BJ, Friesen KG. Effect of dietary fiber or fat in low-crude protein, crystalline amino acid-supplemented diets for finishing pigs. J Anim Sci. 1998;76112818. doi [PubMed] [CrossRef] [Google Scholar]33. Dourmad JY, Henry Y, Bourdon D, Quiniou N. Effect of growth potential and dietary protein input on growth performance, carcass characteristics and nitrogen output in growing-finishing pigs. In Verstegen MWA, Hartog LAD, Kempen GJM, Metz JHM, editors. Nitrogen flow in pig production and environmental consequences. Wageningen EAAP publication no. 69, Pudoc scientific Publisher; 1993. pp. 206–211. [Google Scholar]34. Jiao X, Ma W, Chen Y. Effects of amino acids supplementation in low crude protein diets on growth performance, carcass traits and serum parameters in finishing gilts. Anim Sci J. 2016;87101252–1257. doi [PubMed] [CrossRef] [Google Scholar]35. Peng X, Hu L, Liu Y, Yan C, Fang ZF, Lin Y, et al. Effects of low-protein diets supplemented with indispensable amino acids on growth performance, intestinal morphology and immunological parameters in 13 to 35 kg pigs. Animal. 2016;10111–9. doi [PubMed] [CrossRef] [Google Scholar]36. Coma J, Zimmerman DR, Carrion D. Relationship of rate of lean tissue growth and other factors to concentration of urea in plasma of pigs. J Anim Sci. 1995;73123649. doi [PubMed] [CrossRef] [Google Scholar]37. Portejoie S, Dourmad JY, Martinez J, Lebreton Y. Effect of lowering dietary crude protein on nitrogen excretion, manure composition and ammonia emission from fattening pigs. Livest Prod Sci. 2004;91145–55. doi [CrossRef] [Google Scholar]38. Deng D, Huang RL, Li TJ, Wu GY, Xie MY, Tang ZR, et al. Nitrogen balance in barrows fed low-protein diets supplemented with essential amino acids. Livest Sci. 2007;1091–3220–223. doi [CrossRef] [Google Scholar]39. Monteny GJ, Erisman JW. Ammonia emission from dairy cow buildings a review of measurement techniques, influencing factors and possibilities for reduction. Neth J Agric Sci. 1998;463225–247. [Google Scholar]40. Aarnink AJA, Verstegen MWA. Nutrition, key factor to reduce environmental load from pig production. Livest Sci. 2007;1091194–203. doi [CrossRef] [Google Scholar]41. Latimier P, Dourmad JY. Effect of three protein feeding strategies, for growing-finishing pigs, on growth performance and nitrogen output in the slurry and in the air. In Verstegen MWA, Hartog LAD, Kempen GJM, Metz JHM, editors. Nitrogen flow in pig production and environmental consequences. Wageningen EAAP publication no. 69, Pudoc scientific Publisher; 1993. pp. 242–245. [Google Scholar]42. O’Connell JM, Callan JJ, O’Doherty JV. The effect of dietary crude protein level, cereal type and exogenous enzyme supplementation on nutrient digestibility, nitrogen excretion, faecal volatile fatty acid concentration and ammonia emissions from pigs. Anim Feed Sci Technol. 2006;127173–88. doi [CrossRef] [Google Scholar]Articles from Journal of Animal Science and Biotechnology are provided here courtesy of BioMed Central Jawaban ✅ untuk KONDISI MAHLUK HIDUP YANG KEKURANGAN PIGMEN/ZAT WARNA TUBUH dalam Teka-Teki Silang. Temukan jawaban ⭐ terbaik untuk menyelesaikan segala jenis permainan puzzle Di antara jawaban yang akan Anda temukan di sini yang terbaik adalah ALBINO dengan 6 huruf, dengan mengkliknya Anda dapat menemukan sinonim yang dapat membantu Anda menyelesaikan teka-teki silang Anda. Solusi terbaik 1 0 Apakah itu membantu Anda? 0 0 Frasa Jawaban Huruf Kondisi Mahluk Hidup Yang Kekurangan Pigmen/Zat Warna Tubuh Albino 6 Bagikan pertanyaan ini dan minta bantuan teman Anda! Apakah Anda tahu jawabannya? Jika Anda tahu jawabannya dan ingin membantu komunitas lainnya, kirimkan solusi Anda Serupa NilaiJawabanSoal/Petunjuk ALBINO Kondisi Makhluk Hidup Yang Kekurangan Pigmen EMAS MAS 1 logam mulia logam yang mahal harganya, berwarna kuning mengkilap biasa dibuat perhiasan seperti cincin, kalung; 2 ki uang; harta duniawi; 3 ki ua... SUSU Air yang berwarna putih BUNGA Bagian tumbuhan biasanya berwarna elok dan harum MATA 1 alat pancaindaria pd muka manusia atau binatang yang digunakan untuk melihat; indaria untuk melihat; indaria penglihat; 2 sesuatu yang menyerupai m... AMO Tungau berwarna putih, berjalan cepat, hidup di sekam padi MUTIARA Bola Bola Berwarna Putih Mengkilap Biasanya Dijadikan Kalung ANDAN Orang yang kulitnya putih karena kekurangan pigmen, bulai, albino DALMATIAN Jenis ras anjing, biasanya bulunya berwarna putih dengan bintik-bintik hitam KLEM Paku penjepit kabel berbentuk seperti huruf n, biasanya berwarna putih BULAI Putih seluruh tubuh dan rambutnya karena kekurangan pigmen; balar; sabun BLEKOK Burung bangau berwarna kuning putih atau coklat, hidup di daerah pertanian berawa berair, Ardeola speciosa TELEKUNG Kain selubung berjahit biasanya berwarna putih untuk menutup aurat wanita Islam pd waktu salat; mukena ABU-ABU Warna kelabu; warna seperti abu kayu terbakar, terjadi dengan mencampur pigmen hitam dan putih sama banyaknya; keabu-abuan berwarna agak kelabu; mendekati warna kelabu ALBINOID 1 kerbau atau sapi yang berkulit putih, tidak berpigmen, tetapi tanduk dan kukunya berwarna hitam karena masih mengandung pigmen sapi - 2 mirip orang bulai CENDAWAN Bio golongan jamur tidak berdaun, dan membiak dengan spora yang besar, umumnya berbentuk payung banyak macamnya seperti; sebagai - dibasuh dises... UBAN Rambut berwarna putih LESI Pucat PALLADIUM Logam berwarna putih SERBAPUTIH Semuanya berwarna putih SOTONG 1 hewan laut yang termasuk golongan moluska, kelas Cephalopoda, tidak bertulang belakang, menggunakan kepala sebagai alat untuk bergerak, mempunyai s... SEPAT Ikan yang hidup di air tawar berbentuk pipih, bersisik halus, berwarna keperak- perakan, biasanya dijadikan ikan kering atau ikan asin; bagai anak -... TIKAR Anyaman daun pandan, mendong, dsb untuk lapik duduk tidur, salat, dsb; ganti menggantikan - lepas bantal berganti -, pb mengawini istri kakak... BENDERA Sepotong kain yang berbentuk segi empat atau segitiga, biasanya diikatkan pd tiang, dipergunakan sebagai lambang negara, per-kumpulan, atau tanda; pa... JAMBU Pohon, bercabang banyak, daunnya meter, bunganya berwarna putih atau kehijauan dan berambut halus yang menjadi kering cokelat atau hitam ketika bunga...

kondisi makhluk hidup kekurangan pigmen