Padapostingan kali ini gue dapat share informasi tentang Kuartil Bawah Dari Data Pada Tabel Tersebut Adalah - web site edukasi, informasi ini disatukan dari beragam sumber jadi mohon maaf kalau informasinya tidak cukup lengkap atau tidak cukup tepat. Artikel kali ini juga membicarakan perihal Rumus Kuartil, Desil, dan Persentil | idschool, Rumus Kuartil - Read More Β»
Adatiga nilai kuartil data kelompok, yaitu bawah, tengah, dan kuartil atas. Rumus kuartil data kelompok diberi seperti persamaan di bawah ini. Keterangan Rumus: i adalah 1 kuartil bawah i adalah 2 kuartil tengah i adalah 3 kuartil atas Tb adalah tepi bawah kelas kuartil n adalah jumlah seluruh frekuensi
Jawabanpaling sesuai dengan pertanyaan Kuartil bawah (Q1), kuartil tengah (Q2), dan kurtil atas (Q3) dari data 5,3,2,7,8,6,5,1,5,
Untukmenentukan kuartil maka urutkan data dari terendah sampai tertinggi terlebih dahulu. Kuartil dari kumpulan data membagi data menjadi empat bagian yang sama. Jangkauan interkuartil merupakan selisih antara kuartil atas dan kuartil bawah. Darah seorang pasien setelah diurutkan Banyak data (n) = 18 Jangkauan Kuartil bawah (Qβ)
Denganmenggunakan metode ini, nilai kuartil atas dan bawah selalu merupakan dua titik data. Langkah 3. Q2 = 5, karena mediannya adalah 5. Ada cara lain untuk menemukan kuartil, yaitu menggunakan Metode Turki, misalnya: Bagilah himpunan berikut menjadi empat bagian yang sama (dengan metode Turki): {6, 3, 4, 9, 6, 2, 7, 7, 8, 4, 10}
Vay Tiα»n Online Chuyα»n KhoαΊ£n Ngay. Pada bab kali ini, kita akan membahas materi pelajaran tentang pengertian, rumus kuartil dan cara menentukan kuartil serta contoh soal dan pembahasannya lengkap. Kuartil adalah suatu rumus yang membagi suatu data menjadi kepada empat yang sama banyak. Kemudian dari setiap data yang terbagi sama banyak tersebut dibatasi oleh sebuah nilai. Seperti Pada kuartil, misalakan empat data yang dibagi menjadi sama banyak, akan dibatasi oleh 3 tiga nilai kuartil yaitu kuartil atas, kuartil tengah, dan kuartil bawah. Untuk lebih lengkap, yuk langsung saja kita bahas materinya berikut ini Rumus Kuartil Pengetian Kuartil Kuartil ialah suatu nilai β nilai yang membagi data yang telah diurutkan ke dalam empat bagian yang nilainya sama besar. Dalam menentukan letak kuartil data tunggal, kita harus melihat kondisi jumlah data n terlebih dahulu begitu juga sama halnya dengan cara menentukan kuartil data kelompok. Kuartil pada suatu data dapat didapatkan dengan cara membagi data tersebut secara terurut kedalam empat bagian yang memiliki nilai sama besar. Kuartil itu sendiri terdiri atas tiga macam, yaitu diantaranya Kuartil bawah Q1 Kuartil tengah / median Q2 Kuartil atas Q3 Dan apabila suatu data dilambangkan dengan garis lurus, letak kuartil bawah, kuartil tengah dan kuartil atas ialah sebagai berikut Berdasarkan gambar diatas, bawah dapat kita ketahui letak β letak kuartilnya, yaitu pada kuartil bawah Q1, kuartil tengah Q2 dan kuartil atas Q3 Rumus Kuartil Untuk Nilai Data Tunggal Berdasarkan pengertian kuartil diatas, maka dapat kita ketahui bahwa kuartil adalah membagi data menjadi empat bagian sama banyak. Oleh kaena itu, terdapat tiga nilai kuartil yang membagi data tersebut. Sebelum melakukan pembagian data, pastikan bahwa data tersebut sebelumnya sudah kita urutkan terlebih dahulu. Untuk lebih jelasnya dapat dilihat ilustrasi dibawah berikut Dalam mencari nilai kuartil untuk data tunggal, Rumus dibedakan menjadi dua kasus, yaitu untuk jumah data ganjil dan jumlah data genap. Untuk n ganjil, yaitu Sedangkan cara untuk mencari n genap, yaitu Langkah β langkah mencari tiga nilai kuartil data tunggal untuk jumlah data genap ialah sebagai berikut Carilah nilai yang menjadi nilai tengahnya median atau . Membagi data di sebelah kiri median menjadi dua bagian yang sama dan menghasilkan kuartil bawah atau . Membagi data di sebelah kanan median menjadi dua bagian yang sama dan menghasilkan kuartil atas atau . Contoh Soal Perhatikanlah tabel data nilai matematika yang diperoleh sekelompok siswa dibawah berikut Pembahasan Langkah pertama Urutkan data dan carilah nilai mediannya. Kemudian data yang telah diurutkan dan nilai median dapat dilihat pada gambar di bawah berikut Selanjutnya, carilah nilai kuartil bawahnya , maka diperoleh dari nilai tengah dari data terurut di sebelah kiri median, yaitu Maka, nilai kuartil bawahnya ialah 59 Rumus Kuartil Untuk Data Kelompok Untuk mencari nilai kuartil untuk data kelompok, maka dapat di cari dengan menggunakan rumus sebagai berikut Qi = Tbi + i/4n β Fi/fic Keterangaannya Tbi adalah Tepi bawah kuartil ke-i Fi adalah Jumlah frekuensi sebelum frekuensi kuartil ke-i fi adalah Frekuensi kuartil ke-i. i = 1, 2, 3 n adalah Jumlah seluruh frekuensi C adalah Panjang interval kelas Contoh Soal Perhatikan tabel di bawah berikut ini Tentukan kuartil atas pada tabel tersebut adalah Pembahasannya Kuartil atas ialah disimbolkan Jumlah data yaitu Letak kuartil atas berada di bagian data. Sehingga, letak kuartil atas tersebut berada di data ke-30. Maka caranya adalah sebagai berikut Selanjutnya, perhatikanlah tabel yang sudah dilengkapi dengan frekuensi komulatif kurang dari fkk dan letak kuartil atas, yaitu Sehingga, nilai kuartis atasnya ialah Demikianlah pemabahasan mengenai Rumus Kuartil, baik dari segi pengertian, rumus dan contoh soalnya. Semoga dapat memberikan manfaat β¦ Baca Juga Perbedaan Sel Hewan Dan Sel Tumbuhan Lengkap Aturan Cosinus Pada Trigonometri Segitiga Lengkap dan Contoh Soal
terjawab β’ terverifikasi oleh ahli 2,3,4,6,8,9,11 = data ganjil. kalau ganjil maka, 7+1 = 8maka kuartil bawah = 1/4 x 8 = 2 baris ==> 3kuartil atas = 3/4 x 8 = 6 baris ==> 6jadi berturut-turut = 3 dan 6
Hai Quipperian, saat belajar Matematika pasti kamu sudah mengenal istilah median, kan? Median merupakan nilai tengah dari kumpulan data. Lalu, bagaimana jika kamu diminta untuk menentukan mediannya median? Hayo, ribet kan? Tenang, mediannya median itu biasa dikenal dengan istilah kuartil. Apakah kamu pernah mendengar istilah kuartil? Jika belum, kali ini Quipper Blog akan mengajakmu untuk belajar kuartil data tunggal dan berkelompok. Lalu, apa sebenarnya kuartil data tunggal dan berkelompok itu? Yuk, simak selengkapnya! Pengertian Kuartil Pengertian kuartil hampir sama dengan median. Hanya saja, pada kuartil pembagianya adalah empat. Kuartil adalah suatu nilai yang bisa membagi kumpulan data menjadi empat bagian sama besar. Syarat untuk mendapatkan kuartil ini adalah data harus diurutkan terlebih dahulu. Oleh karena membagi data menjadi empat bagian sama besar, maka setiap bagian memilki persentase 25%. Perhatikan ilustrasi berikut. Dari gambar di atas, muncul istilah Q1, Q2, Q3, kan? Memangnya apa arti istilah-istilah tersebut? Q1 disebut juga kuartil atas, yaitu kuartil yang membagi 25% urutan data terkecil, Q2 disebut juga kuartil tengah atau median, yaitu kuartil yang membagi 50% data sama besar, dan Q3 disebut juga kuartil bawah, yaitu kuartil yang membagi 25% urutan data terbesar. Lalu, apa yang dimaksud kuartil data tunggal dan berkelompok? Pengertian Kuartil Data Tunggal Data tunggal adalah data yang disusun secara tunggal, tidak dalam bentuk interval. Kuartil data tunggal adalah suatu nilai yang membagi data-data tunggal menjadi empat bagian sama besar. Contoh data tunggal adalah 1, 1, 2, 2, 3, 3, 4, 4, dan seterusnya. Pengertian Kuartil Data Berkelompok Data berkelompok adalah kumpulan data yang ditulis dalam bentuk interval. Kuartil data berkelompok adalah suatu nilai yang membagi data-data interval menjadi empat bagian sama besar. Memangnya, apa sih tujuan dari ditentukannya kuartil? Misalnya pada kasus e-commerce, kuartil ini bisa dijadikan indikator untuk menentukan 25% penjual dengan rating tertinggi, 25% penjual dengan pendapatan terbesar, atau sebaliknya. Rumus Kuartil Rumus kuartil data tunggal berbeda dengan data berkelompok. Mengingat, penyajian kedua jenis data juga berbeda. Khusus untuk data berkelompok ada beberapa elemen yang harus kamu perhatikan. Agar kamu semakin paham, simak rumus berikut. Rumus Kuartil Data Tunggal Sebelum menentukan kuartil data tunggal, kamu harus tahu dulu letak kuartil yang kamu cari. Adapun letak kuartil suatu data tunggal bisa kamu cari dengan rumus di bawah ini, ya. Dengan Qi = kuartil ke-i; i = 1, 2, 3 bergantung letak kuartil yang dicari; dan n = banyaknya data. Letak kuartil menandakan urutan data tempat kuartil itu sendiri. Artinya, setelah tahu letaknya, kamu bisa menentukan kuartilnya sesuai urutan yang diperoleh. Misalnya, letak kuartil ke-1 adalah 4, maka data yang berada di urutan 4 itulah yang dinamakan kuartil ke-1. Perhatikan contoh, ya. Berapakah kuartil ke-3 dari kumpulan data-data berikut. 2, 2, 2, 1, 1, 1, 5, 5, 3, 3, 4, 4, 9, 9, 2, 1, 2, 3, 8 Pembahasan Pertama, urutkan dahulu datanya. 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 8, 9, 9 β banyaknya data n = 19 Selanjutnya, tentukan letak kuartil ke-3 dengan rumus berikut. Dari perhitungan di atas, diperoleh bahwa kuartil ke-3 terletak di data urutan ke-15, yaitu 5. Jadi, kuartil ke-3nya adalah 5. Rumus Kuartil Data Berkelompok Rumus kuartil data berkelompok tentu tidak sesederhana data tunggal. Ada beberapa elemen yang harus kamu tentukan sebelumnya, seperti letak kuartil yang dicari, frekuensi kumulatif data, tepi bawah kuartil yang dicari, dan interval kelas. Adapun langkah menentukan kuartil data berkelompok adalah sebagai berikut. Mula-mula, tentukan dahulu letak kuartilnya Dengan Qi = kuartil ke-i i = letak kuartil ke-i; dan n = banyaknya data. Setelah tahu letak kuartilnya, tentukan kuartil yang dimaksud dengan rumus berikut. Dengan Qi = kuartil ke-i; Tbi = tepi bawah kelas kuartil ke-i; p = interval kelas; fk = frekuensi kumulatif sebelum kuartil ke-i; f = frekuensi kuartil ke-i; n = banyaknya data; dan i = posisi kuartil yang dicari 1 β 3. Untuk lebih lengkapnya, perhatikan contoh berikut ini. Diketahui tabel berat badan siswa SD Kelas 1 β 6 SD Mulia Jaya. Berat BadanFrekuensi f 25 β 283029 β 322233 β 364537 β 4016Jumlah113 Tentukan kuartil ke-1 dari data di atas! Pembahasan Mula-mula, tentukan dahulu frekuensi kumulatif pada tabel. Berat badanFrekuensi f Frekuensi kumulatif fk25 β 28303029 β 32225233 β 36459737 β 4016113Jumlah113 Selanjutnya, tentukan letak kuartil ke-1. Oleh karena letak kuartilnya pertamanya 28,25, maka kuartil tersebut berada di rentang berat badan 25 β 28. Lalu, tentukan tepi bawah kuartil ke-1 dan panjang data interval. Tb1 = 25 β 0,5 = 24,5 p = panjang data = 4. Terakhir, substitusikan nilai elemen-elemen yang diketahui pada persamaan berikut. Jadi, kuartil ke-1 dari data berat badan tersebut adalah 28,26. Contoh Soal Untuk mengasah pemahamanmu tentang kuartil data tunggal dan berkelompok, yuk simak contoh soal berikut ini. Contoh Soal 1 Diketahui data-data berikut. 7, 3, 2, 4, 5, 2, 5, 4, 1, 3, 8, 7, 4, 7, 9 Tentukan perbandingan kuartil ke-1 dan kuartil ke-3 dari data di atas! Pembahasan Mula-mula, urutkan dahulu datanya seperti berikut. 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 7, 7, 7, 8, 9 β n = 15 Selanjutnya, tentukan letak kuartil ke-1. Kuartil ke-1 berada di urutan data nomor 4, yaitu 3. Selanjutnya, tentukan letak kuartil ke-3. Kuartil ke-3 terletak di urutan data nomor 12, yaitu 7. Jadi, perbandingan kuartil ke-1 dan kuartil ke-3 adalah 3 7. Contoh Soal 2 Bu Abel membagikan daftar perolehan nilai Matematika SMP Nusa Bangsa Kelas VIIA seperti berikut. Nilai MatematikaBanyak siswa65107257988212 Siswa dinyatakan lulus jika memiliki nilai lebih besar atau sama dengan median. Berapakah banyaknya siswa yang tidak lulus? Pembahasan Diketahui n = banyaknya data = 35 Untuk menentukan jumlah siswa yang tidak lulus, kamu harus mencari dulu nilai mediannya Q2. Meskipun disajikan dalam bentuk tabel, tapi data di atas termasuk data tunggal, ya. Hal itu karena penulisan nilainya tidak dijadikan interval. Adapun median data di atas adalah sebagai berikut. Kuartil kedua atau median berada di urutan data nomor 18, yaitu 79. Artinya, siswa dikatakan lulus jika nilai minimalnya 79. Dengan demikian, banyaknya siswa yang tidak lulus adalah 15. Jadi, jumlah siswa yang tidak lulus adalah 15. Contoh Soal 3 Dalam rangka memperingati Hari Pendidikan Nasional, Dinas Pendidikan Kota Y mengadakan Seminar Pendidikan pada 60 orang dengan rentang usia yang berbeda-beda seperti berikut. Rentang usia thJumlah peserta16 β 20421 β 251026 β 30631 β 351536 β 40841 β 451446 β 503 Tentukan kuartil ke-3 dari data di atas! Pembahasan Mula-mula, tentukan dahulu frekuensi kumulatif pada tabel. Rentang usia thJumlah pesertaFrekuensi kumulatif fk16 β 204421 β 25101426 β 3062031 β 35153536 β 4084341 β 45145746 β 50360 Banyaknya data n = 60. Selanjutnya, tentukan letak kuartil ke-3. Oleh karena letak kuartilnya pertamanya 45, maka kuartil tersebut berada di rentang usia 41 β 45. Lalu, tentukan tepi bawah kuartil ke-3 dan panjang data interval. Tb3 = 41 β 0,5 = 40,5 p = panjang data = 5 Terakhir, substitusikan nilai elemen-elemen yang diketahui pada persamaan berikut. Jadi, kuartil ke-3 dari data berat badan tersebut adalah 41,21. Itulah pembahasan Quipper Blog kali ini. Semoga bermanfaat, ya. Untuk mendapatkan materi lengkapnya, yuk buruan gabung Quipper Video. Salam Quipper!
Kuartil adalah suatu nilai-nilai yang membagi sekumpulan data yang sudah terurut menjadi 4 bagian. Kuartil terdiri dari 3 nilai, yaitu kuartil bawah Q1, kuartil tengah Q2, dan kuartil atas Q3. Ketiga nilai kuartil tersebut juga biasa disebut dengan kuartil 1 Q1, kuartil tengah Q2, kuartil atas Q3. Q di sini artinya quartile ya. Quartile merupakan bahasa inggris dari Kuartil. Biar langsung jelas, mari kita lihat letak dari Q1, Q2, Q3 di gambar berikut. Dari gambar di atas, kita bisa lihat bahwa Kuartil bawah Q1 adalah nilai tengah data di sebelah kiri Q2 Kuartil tengah Q2 adalah nilai tengah keseluruhan data. Hal ini juga sama dengan median. Kuartil atas Q3 adalah nilai tengah data di sebelah kanan Q2 Cara Mencari Kuartil Atas, Tengah, dan Bawah Data Tunggal Cara Mencari Kuartil Data Tunggal Tanpa Rumus Kalau data yang diberikan itu sedikit, kita bisa hitung manual tanpa rumus. Caranya? Nah, kalau kita lihat, kuartil tengah Q2 itu adalah median yang membagi 2 keseluruhan data. Di sebelah kiri median kita sebut data pertama dan di sebelah kanan median kita sebut data terakhir. Nilai tengah dari data pertama itulah yang disebut sebagai kuartil bawah Q1. Sedangkan kuartil atas Q3 adalah nilai tengah dari data terakhir. Jadi kalau datanya sedikit, kita bisa bagi 2 datanya, kemudian cari nilai tengah dari masing-masing data yang sudah dipisah tadi. Biar nggak bingung langsung kita contohkan saja. Misalnya kita diberikan data yang banyaknya itu 11. 12 13 11 6 4 9 3 7 6 5 9 Hal pertama yang kita harus lakukan untuk mendapatkan kuartil adalah mengurutkan datanya. Mau nyarinya nanti pake rumus atau nggak, kita pertama harus urutkan datanya mulai dari yang paling kecil hingga ke paling besar. Data di atas jika kita urutkan menjadi 3 4 5 6 6 7 9 9 11 12 13 Kemudian kita cari nilai tengah dari keseluruhan data tersebut Q2 kemudian kita bagi datanya menjadi 2 bagian. Untuk mencari nilai tengah keseluruhan data kita bisa menggunakan rumus median. Atau kalian bisa manual nyari dimana posisi tengah dari data tersebut. Biar penjelasannya mudah, kita pake rumus median aja. $X_{n+1/2}$ X_{11+1/2} X_{6} Dari perhitungan yang kita lakukan, nilai tengahnya berada di posisi ke-6. Berarti kuartil tengah dari data tersebut adalah 7. Setelah mendapat nilai tengah tersebut, kita bisa membagi data menjadi 2 bagian, yaitu data pertama dan data terakhir. Kita mendapat data pertama itu 3 4 5 6 6 Kan kuartil bawah Q1 itu adalah nilai tengah dari data pertama. Karena data pertamanya udah dapat, kita bisa langsung cari nilai tengahnya. Untuk mendapatkan nilai tengahnya, sama seperti mencari median. Hanya saja banyak datanya sesuai dengan banyak data pertama. Nilai tengah dari data pertama itu adalah data di posisi ke-3, yaitu 5. Berarti kuartil bawah Q1 nya adalah 5. Untuk mendapat kuartil atas, kita perlu mencari nilai tengah dari data terakhirnya. Data terakhir yang kita dapat itu adalah sebagai berikut 9 9 11 12 13 Sama seperti yang tadi, untuk mendapatkan nilai tengahnya bisa pake cara atau rumus seperti mencari median tapi jangan lupa banyak datanya sesuai dengan banyak data terakhir. Nilai tengah dari data terakhir itu adalah data di posisi ke-3 juga, yaitu 11. Berarti kuartil atas Q3 nya adalah 11. Dari cara yang kita lakukan tadi, pada data 12 13 11 6 4 9 3 7 6 5 9, kita mendapat kuartil bawahnya Q1 adalah 5, kuartil tengahnya Q2 adalah 7, dan kuartil atasnya Q3 adalah 11. Intinya, kita cari nilai tengahnya Q2, kemudian untuk mendapat kuartil bawah Q1, kita cari nilai tengah dari data yang di sebelah kiri Q2. Untuk mendapat kuartil atas Q2, kita cari nilai tengah dari data yang di sebelah kanan Q2. Cara Mencari Kuartil Data Tunggal Dengan Rumus Nah, kalau datanya sedikit, kita tinggal cari nilai tengah. Kemudian kita cari nilai tengah data yang di kiri dan nilai tengah data yang di kanan. Hanya tinggal pake rumus median-median saja. Tapi hal tersebut mungkin saja akan menjadi ribet jika data yang diberikan itu ada banyak. Karena kita harus cari nilai tengah, misah datanya lagi, kemudian cari nilai tengahnya lagi. Rumus Kuartil Bawah Q1 Kalau banyak datanya ganjil $X_{\frac{1}{4}n+1}$ Kalau banyak datanya genap $X_{\frac{1}{4}n+2}$ Rumus Kuartil Tengah Q2 Rumus kuartil tengah sebenarnya sama dengan rumus median. Kalau banyak datanya ganjil $X_{\frac{1}{2}n+1}$ Kalau banyak datanya genap $ X_{\frac{\frac{1}{2}n + \frac{1}{2}n+1 }{2}}$ Rumus Kuartil Atas Q3 Kalau banyak datanya ganjil $ X_{\frac{3}{4}n+1}$ Kalau banyak datanya genap $X_{\frac{3}{4}n+2-1}$ Sekarang kita coba menggunakan rumus tersebut ke contoh data yang tadi 12 13 11 6 4 9 3 7 6 5 9. Ingat, walaupun kita akan menggunakan rumus, tapi kita tetap harus mengurutkan datanya terlebih dahulu. Setelah diurutkan, datanya menjadi 3 4 5 6 6 7 9 9 11 12 13 Oh iya, karena banyak datanya 11 ganjil, kita akan menggunakan rumus data ganjil. Kita coba mencari kuartil bawah dengan menggunakan rumus $X_{\frac{1}{4}n+1}$ $X_{\frac{1}{4}11+1}$ $X_{\frac{1}{4}12}$ $X_{3}$ Kita mendapat kalau kuartil bawah Q1 nya berada di posisi ke-3. Data yang berada di posisi ketiga adalah 5. Berarti kuartil bawah Q1 nya adalah 5. Selanjutnya kita coba mencari kuartil tengah Q2 dengan menggunakan rumus $X_{\frac{1}{2}11+1}$ $X_{\frac{1}{2}12}$ $X_{6}$ Dengan menggunakan rumus, kita mendapatkan kalau kuartil tengah Q2 adalah data di posisi ke-6. Berarti kuartil tengah Q2 nya adalah 7. Sekarang kita coba mencari kuartil atas Q3 dengan menggunakan rumus $ X_{\frac{3}{4}n+1}$ $ X_{\frac{3}{4}11+1}$ $ X_{\frac{3}{4}12}$ $ X_{9}$ Dengan menggunakan rumus, kita mendapatkan kalau kuartil atas Q3 adalah data di posisi ke-9. Berarti kuartil atas Q3 nya adalah 11. Dengan menggunakan rumus, dari data 12 13 11 6 4 9 3 7 6 5 9, kita mendapat kuartil bawahnya Q1 adalah 5, kuartil tengahnya Q2 adalah 7, dan kuartil atasnya Q3 adalah 11. Hasilnya sama seperti ketika kita mencari kuartilnya tanpa menggunakan rumus. Penutup Berikut adalah gambaran besar dari bahasan kita tentang kuartil di artikel ini Kuartil adalah 3 nilai yang membagi data menjadi 4 bagian. Untuk mencari kuartil, datanya terlebih dahulu harus diurutkan Kuartil dapat dicari dengan menggunakan 2 cara yaitu tanpa rumus dan dengan menggunakan rumus. Mencari kuartil tanpa rumus cukup mendapatkan nilai tengah keseluruhan data, nilai tengah data di sebelah kiri median, dan nilai tengah di sebelah kanan median. Terdapat rumus untuk banyak data ganjil dan genap dalam mendapatkan kuartil bawah, tengah, dan atas.
Pengertian dan Rumus Cara Menghitung dan Mencari Kuartil Bawah, Tengah dan Kuartil Atas beserta Contoh Soal Kuartil β Pada artikel kali akan memberikan pembahasan mengenai segala sesuatu mengenai kuartil. Mulai dari pengertian kuartil, cara menghitung kuartil atas, kuartil tengah dan kuartil bawah, hingga rumus dan contoh soal beserta jawabannya. Simak terus artikel ini Kuartil QuartilApa itu Kuartil? Kuartil adalah nilai-nilai yang membagi data yang telah diurutkan ke dalam empat bagian yang nilainya sama besar. Dalam menentukan letak kuartil data tunggal, anda harus melihat kondisi jumlah data n terlebih pada suatu data dapat diperoleh dengan cara membagi data tersebut secara terurut menjadi empat bagian yang memiliki nilai sama sendiri terdiri atas tiga macam, yaituKuartil bawah Q1Kuartil tengah/median Q2Kuartil atas Q3Apabila suatu data dilambangkan dengan garis lurus, letak kuartil bawah, kuartil tengan dan kuartil atas adalah sebagai berikutGari gambar di atas dapat diketahui letak kuartil bawah Q1, kuartil tengah Q2, dan kuartil atas Q3 pada suatu tahu kan, pengertian dari kuartil dan cara membaginya. Sekarang kita berlanjut untuk memperlajari rumus dan cara menghitung Cara Menghitung dan Mencari KuartilCara menentukan kuartil adalah sebagai data dari yang terkecil hingga dengan data yang Q2 atau Q1 dengan membagi data di bawah Q2 menjadi dua bagian yang sama Q3 dengan membagi data di atas Q2 menjadi dua bagian sama Soal KuartilUntuk lebih jelasnya, pelajarilah contoh soal kuartil bawah Q1, kuartil tengah Q2, dan kuartil atas Q3 dari data-data 20 35 50 45 30 30 25 40 45 30 35b. 11 13 10 10 12 15 14 12Jawaba. Urutkan data terlebih dahulub. Urutkan data terlebih itulah dia penjelasan mengenai perngertian kuartil, serta cara menghitung kuartil atas, kuartil tengah dan kuartil bawah, hingga rumus dan contoh soal beserta dengan jawabannya. Semoga artikel ini bermanfaat, selamat belajar!Baca JugaSifat-sifat Fisika dan Kimia suatu Zat serta ContohnyaPengertian dan Ciri-ciri Reaksi Kimia serta contoh reaksi kimia dalam kehidupanPengertian Bilangan Asli dan Contohnya
kuartil bawah dan kuartil atas